

KWAZULU-NATAL PROVINCE
EDUCATION
REPUBLIC OF SOUTH AFRICA

**NATIONAL
SENIOR CERTIFICATE**

GRADE 11

Stanmorephysics.com

**MATHEMATICS
COMMON ASSESSMENT TASK
ASSIGNMENT – TERM 2
MAY 2025**

MARKS: 50

TIME: 1½ hour

This question consists of 6 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

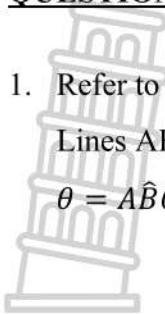
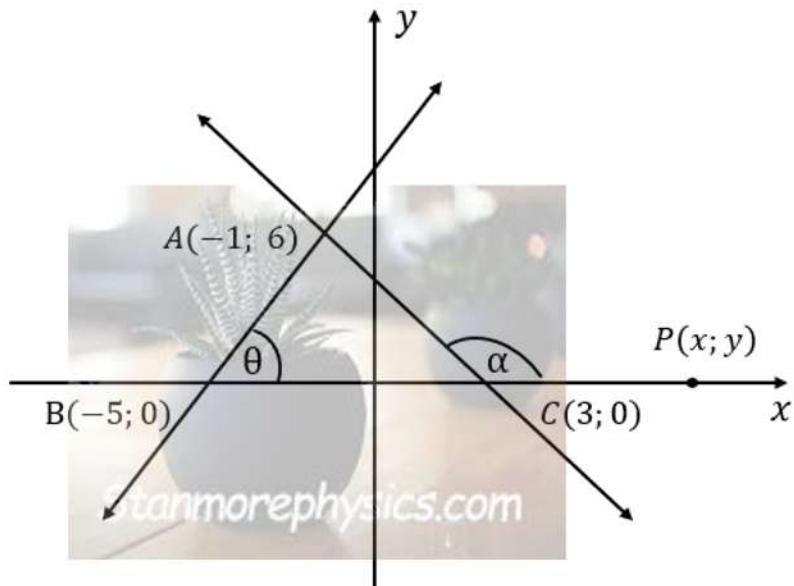
1. This question paper consists of **4** Questions.
2. Answer **ALL** the questions.
3. Number the answers correctly according to the numbering system used in this question paper.
4. Clearly show **ALL** calculations, diagrams (which may not necessarily be drawn to scale), graphs, etc, that you have used in determining your answers
5. Answers only will **NOT** necessarily be awarded full marks.
6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
7. If necessary, round off answers correct to **TWO** decimal places, unless stated otherwise
8. Write neatly and legibly.

QUESTION 1: Analytical Geometry

1. Refer to the accompanying figure:

Lines AB and AC intersect at $A(-1; 6)$. $B(-5; 0)$ and $C(3; 0)$ are also depicted.

$\theta = \hat{ABC}$; $\alpha = \hat{ACP}$ where point $P(x; y)$ lies beyond C on the $x - axis$.



- 1.1. Is the line AB perpendicular to line AC? Show clearly all working details to justify your answer. (4)
- 1.2. Calculate the size of \hat{BAC} . (rounded off to one decimal digit). (4)
- 1.3. Calculate the length of AB. (Leave your answer in surd form). (2)
- 1.4. Show that ΔABC is isosceles (3)
- 1.5. If A, B and $D(a, 8)$ are three collinear points. Calculate the value of a . (3)

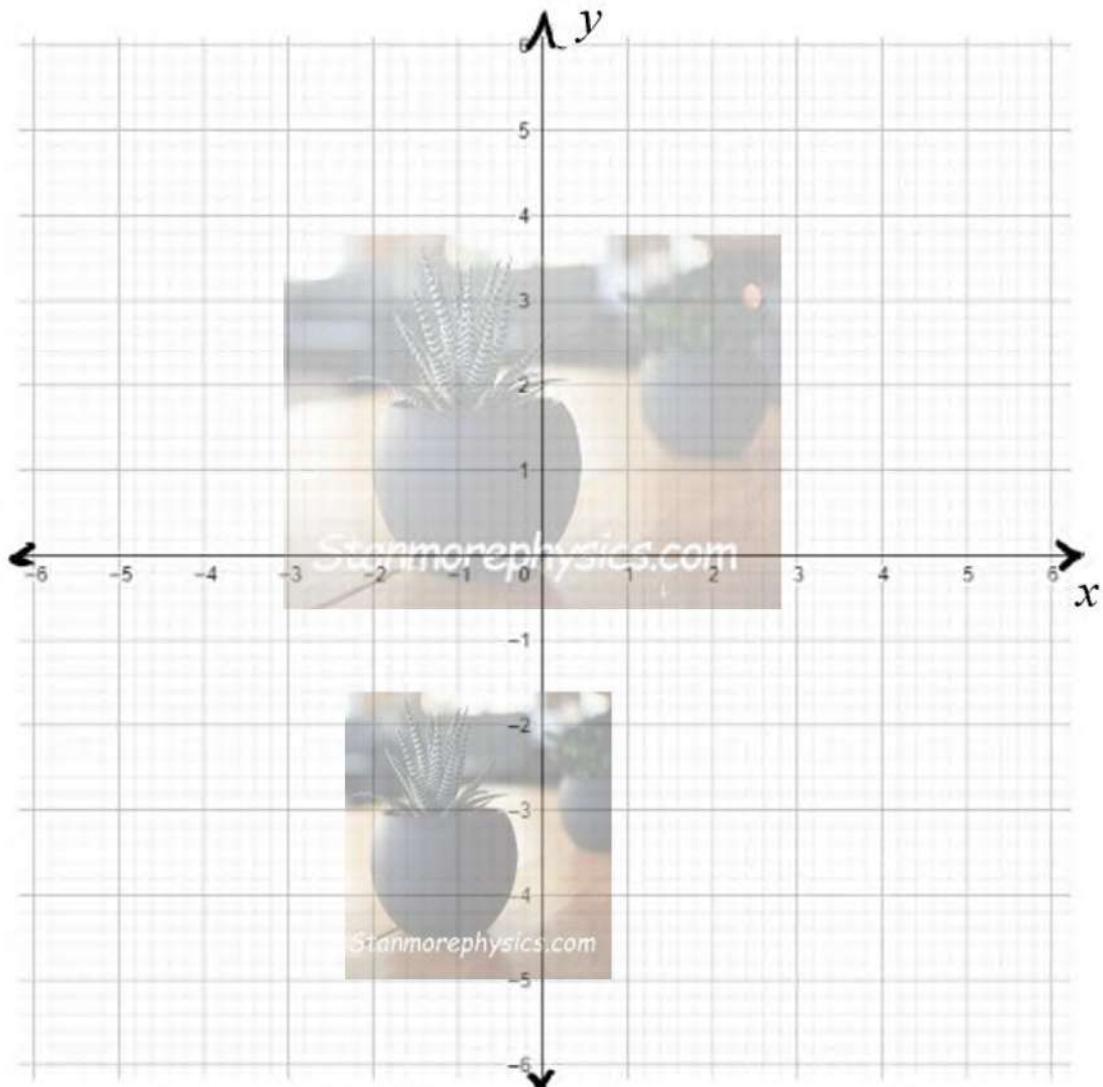
[16]

QUESTION 2 Functions (Linear, Quadratic and Hyperbolic Functions)

2. Given the following functions

- $f(x) = x^2 - 3x - 4$
- $g(x) = x + 1$

2.1. Sketch the $f(x)$ and $g(x)$ on the same cartesian plane provided. (5)



2.2. State the domain and range of $f(x)$. (3)

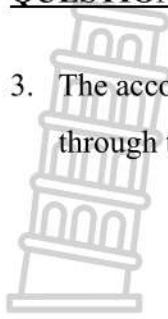
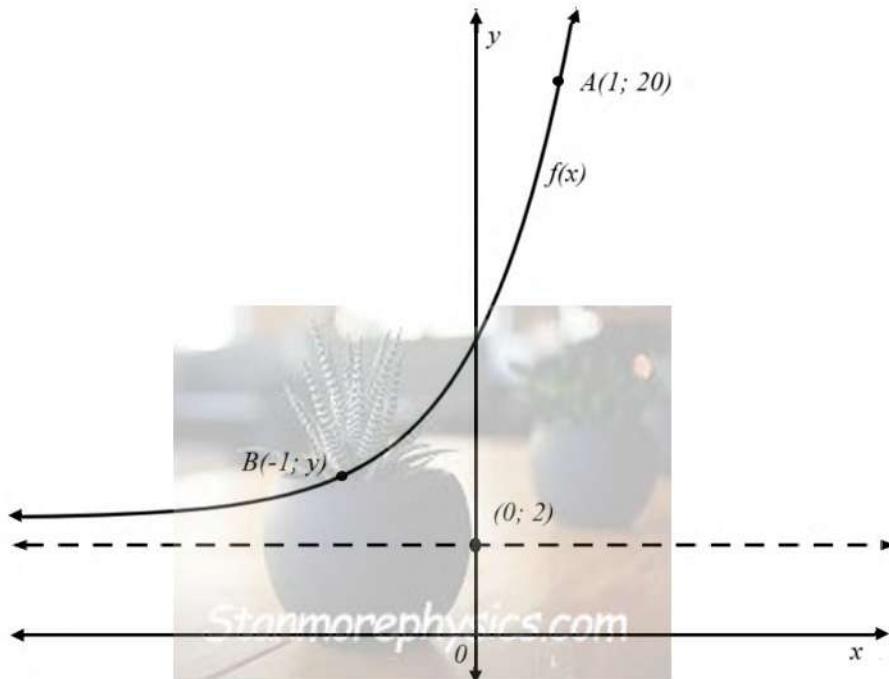
2.3. If $g(x)$ is the positive Axis of Symmetry line of the hyperbola: $h(x) = \frac{-2}{x+p} + 3$.

Determine the value of p . (2)

[10]

QUESTION 3 Functions (Exponential Functions)

3. The accompanying sketch is the graph of $f(x) = 2 \cdot b^{x+1} + q$. The graph of f passes through the points $A(1; 20)$ and $B(-1; y)$. The line $y = 2$ is an asymptote of f .



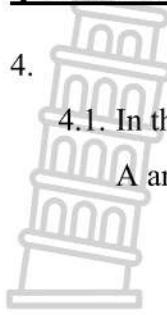
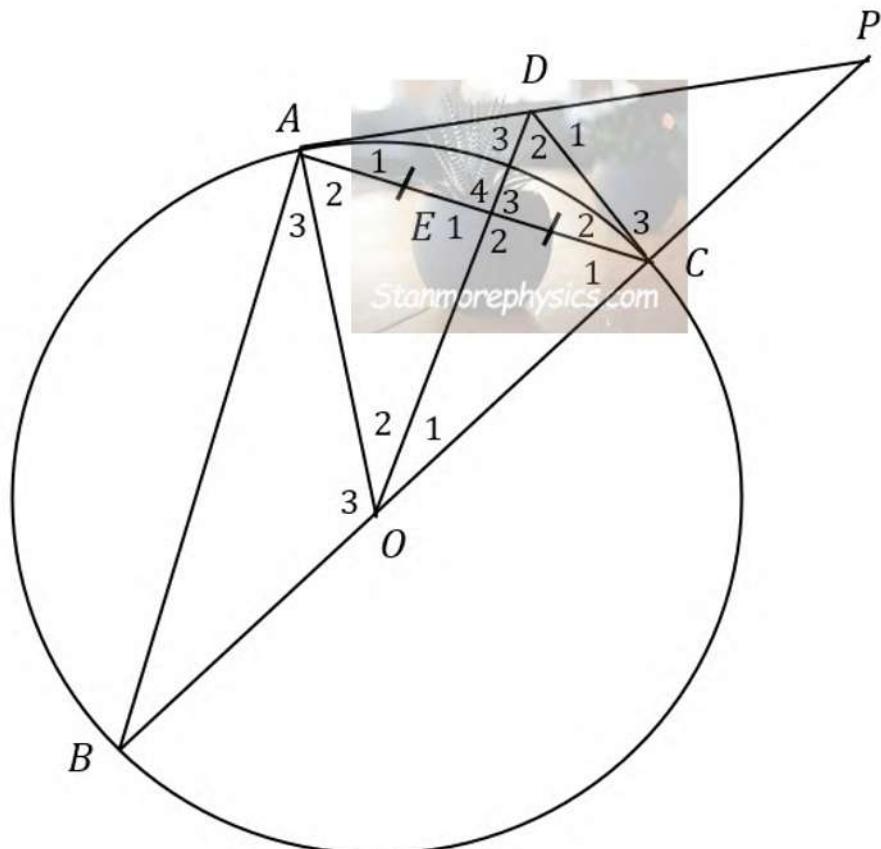
- 3.1. Show that the equation of f is $f(x) = 2 \cdot (3)^{x+1} + 2$ (2)
- 3.2. Is the graph of f strictly increasing, decreasing or neither? (1)
- 3.3. Calculate the y – coordinate of the point B . (1)
- 3.4. Determine the vertical distance between point A and the closest point on the horizontal asymptote.
- [Note: Euclid's Axiom states that the shortest path between two points on a cartesian plane is the straight-line segment between them] (2)
- 3.5. Determine the average gradient of the curve between the points A and B . (2)
- 3.6. A new function g is obtained when f is reflected about the y – axis, then reflected about its asymptote. Determine the equation of g . (2)
- 3.7. For which values of x is $f(x) > g(x)$. (1)

[11]

QUESTION 4 (Euclidean Circle Geometry)

4.

- 4.1. In the diagram below, BOC is a diameter of the circle. AP is a tangent to the circle at A and $AE = EC$.



Prove that:

4.1.1. $BA \parallel OD$ (4)4.1.2. $AOCD$ is a cyclic quadrilateral. (5)4.1.3. DC is a tangent to the circle at C . (4)

[13]

TOTAL: 50

KWAZULU-NATAL PROVINCE
EDUCATION
REPUBLIC OF SOUTH AFRICA

**NATIONAL
SENIOR CERTIFICATE**

GRADE 11

**MATHEMATICS
COMMON ASSESSMENT TASK
ASSIGNMENT – TERM 2
MAY 2025
MARKING GUIDELINES**

MARKS: 50

TIME: 1 hour

These marking guidelines consists of 6 pages.

Question One: Analytical Geometry [16 marks]

1.

1.1. RTP: $m_{AB} \cdot m_{AC} = -1$ if \perp Proof: LHS = $m_{AB} \cdot m_{AC}$... (1)

$$m_{AB} = \frac{\Delta y}{\Delta x} = \frac{y_A - y_B}{x_A - x_B} = \frac{6 - 0}{-1 + 5} = \frac{6}{4} = \frac{3}{2}$$

$$m_{AC} = \frac{\Delta y}{\Delta x} = \frac{y_A - y_C}{x_A - x_C} = \frac{6 - 0}{-1 - 3} = \frac{6}{-4} = \frac{3}{-2}$$

$$\therefore LHS = \frac{3}{2} \times \left(-\frac{3}{2}\right) = -\frac{9}{4} \neq -1$$

 $\therefore AB \text{ not } \perp \text{ to } AC$

✓ A correct gradient value

✓ A correct gradient value

✓ A correct deduction

✓ A correct conclusion

(4)

1.2. Now, $\tan \theta = m_{AB}$

$$\tan \theta = \frac{3}{2} \Rightarrow \theta = \tan^{-1}\left(\frac{3}{2}\right) \Rightarrow \theta = 56.3^\circ$$

Moreover, $\tan \theta_{ref} = m_{AB}$

$$\tan \alpha_{ref} = \frac{3}{2} \Rightarrow \alpha_{ref} = \tan^{-1}\left(\frac{3}{2}\right) \Rightarrow \alpha_{ref} = 56.3^\circ$$

$$\therefore \alpha = 180^\circ - \alpha_{ref} \Rightarrow \alpha = 180^\circ - 56.3^\circ$$

$$\Rightarrow \alpha = 123.7^\circ$$

 $\therefore B\hat{A}C = \alpha - \theta$ (ext \angle of ΔABC)

$$B\hat{A}C = 123.7^\circ - 56.3^\circ \Rightarrow B\hat{A}C = 67.4^\circ$$

✓ $\theta = 56.3^\circ$ ✓ $\tan \theta_{ref} = m_{AB}$ ✓ $\alpha = 123.7^\circ$ ✓ $B\hat{A}C = 67.4^\circ$

(4)

1.3. Now, $AB = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$

$$AB = \sqrt{(-1 + 5)^2 + (6 - 0)^2} \Rightarrow AB = \sqrt{16 + 36}$$

$$AB = \sqrt{52}$$

$$\therefore AB = 2\sqrt{13}$$

✓ substitution

✓ answer

(2)

1.4. **Method One: //Equal Sides**Note: $BC = 8$ units (By Observation)✓ $BC = 8$ units

$$\text{Now, } AC = \sqrt{(x_A - x_C)^2 + (y_A - y_C)^2}$$

✓ substitution

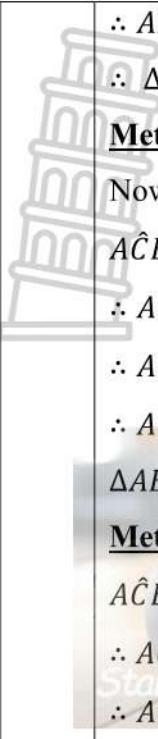
$$AC = \sqrt{(-1 - 3)^2 + (6 - 0)^2} \Rightarrow AC = \sqrt{16 + 36}$$

$$AC = \sqrt{52}$$

$$\therefore AC = 2\sqrt{13}$$

✓ answer

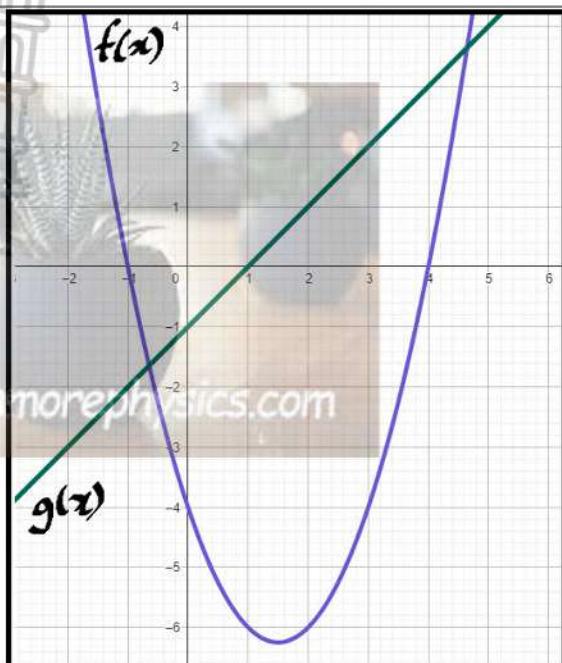
(3)

	$\therefore AB = AC$ $\therefore \Delta ABC \text{ is isosceles}$ <p>Method Two: //Equal Angles (a)</p> <p>Now in ΔABC:</p> $A\hat{C}B + \theta + B\hat{A}C = 180^\circ \quad (\angle \text{ sum in } \Delta ABC)$ $\therefore A\hat{C}B = 180^\circ - 56.3^\circ - 67.4^\circ$ $\therefore A\hat{C}B = 56.3^\circ$ $\therefore A\hat{C}B = \theta$ <p>ΔABC is isosceles</p> <p>Method Three: //Equal Angles (b)</p> $A\hat{C}B + \alpha = 180^\circ \quad (\angle \text{ s on a str line})$ $\therefore A\hat{C}B = 180^\circ - 123.7^\circ \Rightarrow A\hat{C}B = 56.3^\circ$ $\therefore A\hat{C}B = \theta$ <p>ΔABC is isosceles</p>	$\checkmark A\hat{C}B + \theta + B\hat{A}C = 180^\circ$ $\checkmark A\hat{C}B = 56.3^\circ$ $\checkmark A\hat{C}B = \theta$ $\checkmark A\hat{C}B + \alpha = 180^\circ$ $\checkmark A\hat{C}B = 56.3^\circ$ $\checkmark A\hat{C}B = \theta$
1.5.	<p>Now, for collinear points, $\mathbf{m}_{AB} = \mathbf{m}_{BD} = \mathbf{m}_{AD}$</p> $\frac{6 - 0}{-1 + 5} = \frac{0 - 8}{-5 - a}$ $\frac{6}{4} = \frac{-8}{-5 - a}$ $-30 - 6a = -32$ $-6a = -2$ $a = \frac{1}{3}$	$\checkmark \frac{6}{4} = \frac{-8}{-5-a}$ $\checkmark -30 - 6a = -32$ $\checkmark \text{answer}$

Question Two: Functions (Linear, Quadratic and Hyperbolic Functions [10 marks])

2.

2.1.



- ✓ A shape of $f(x)$
- ✓ A shape of $g(x)$
- ✓ A x -intercepts of $f(x)$
- ✓ A intercepts of $g(x)$
- ✓ A y-intercept of $f(x)$

(5)

2.2.

$$D_f = \{x | x \in \mathbb{R}\}$$

And

$$x = -\frac{b}{2a} \Rightarrow x = \frac{3}{2}$$

$$\therefore y = \left(\frac{3}{2}\right)^2 - 3\left(\frac{3}{2}\right) - 4 \Rightarrow y = -\frac{25}{4}$$

$$R_f = \{y | y \in \mathbb{R}; y \geq -\frac{25}{4}\}$$

Note: Can Use Interval Notation or Inequalities

- ✓ A Correct Domain

- ✓ A correct y_{TP}

- ✓ A correct Range

(3)

2.3.

Now, For the positive AOS:

$$y = (x + p) + 3$$

$$\text{But } y = x + 1$$

$$\therefore x + 1 = x + p + 3$$

$$\therefore p = -2$$

$$\checkmark y = (x + p) + 3$$

✓ answer

(2)

[10]

Question Three: Functions (Exponential Functions) [10 marks]

3.

3.1.	<p>Now, $f(x) = 2(b)^{x+1} + 2$ Substitute $A(1 ; 20)$ $\Rightarrow 20 = 2(b)^{1+1} + 2$ $\Rightarrow \frac{18}{2} = \frac{2}{2} b^2$ $\Rightarrow 9 = b^2$ $\therefore b = \pm\sqrt{9} \Rightarrow b = 3$ (Strictly increasing)</p>	\checkmark sub $A(1 ; 20)$ \checkmark answer (2)
3.2.	$f(x)$ is strictly increasing $\forall x \in \mathbb{R}$	\checkmark answer (1)
3.3.	<p>Now, $f(x) = 2.(3)^{x+1} + 2$, Substitute $x = -1$ into $f(x)$ $y_B = f(-1) = 2(3)^{-1+1} + 2$ $\therefore y_B = 4$</p>	
3.4.	<p>Let H be the shortest distance/perpendicular height between the Horizontal Asymptote and A. $H = \Delta y = y_A - y_H$ $H = 20 - 2$ $\therefore H = 18$ units</p>	\checkmark $H = \Delta y = y_A - y_H$ \checkmark answer (2)
3.5.	<p>Now, the Average $m_{AB} = \frac{\Delta y}{\Delta x} = \frac{y_A - y_B}{x_A - x_B}$</p> $m_{AB} = \frac{20 - 4}{1 - (-1)}$ $m_{AB} = 8$ (very steep)	\checkmark substitute into formula \checkmark answer (2)
3.6.	$f(x)_{NEW} = f(-x)$ //Reflected about the $y - axis$ $f(x)_{NEW} = 2.(3)^{-x+1} + 2$ $\therefore g(x) = -2.(3)^{-x+1} + 2$	\checkmark $f(x)_{NEW} = 2.(3)^{-x+1} + 2$ \checkmark $g(x) = -2.(3)^{-x+1} + 2$ (2)
3.7.	$\forall x \in \mathbb{R}$	\checkmark answer (1) [11]

Question Four: Euclidean Geometry [13 marks]

4.

4.1.1.	<p><i>RTP: BA//OD</i></p> <p><i>Proof:</i></p> <p>Now, $B\hat{A}C = 90^\circ$ ($\angle \text{in } \frac{1}{2} \odot$)</p> <p>In ΔAEO:</p> <p>$\hat{E}_1 = 90^\circ$ ($OD \text{ bisects } AC$)</p> <p>$\therefore AB//OD$ (<i>converse, co-int \angles supp</i>)</p>	$\checkmark S \checkmark R$ $\checkmark R$ $\checkmark S \checkmark R$ (4)
4.1.2.	<p><i>RTP: AOCD is cyclic quad</i></p> <p><i>Proof:</i></p> <p>Now, $\hat{A}_1 = \hat{B}$ (<i>tan chord theorem</i>)</p> <p>But $\hat{B} = \hat{O}_1$ (<i>AB//OD, corresp \angles =</i>)</p> <p>$\therefore \hat{O}_1 = \hat{A}_1$</p> <p><i>AOCD is a cyclic quad</i> (<i>converse line subtends equal angles</i>)</p>	$\checkmark S \checkmark R$ $\checkmark S \checkmark R$ $\checkmark R$ (5)
4.1.3.	<p>$\hat{C}_2 = \hat{O}_2$ ($\angle \text{s in same segment}$)</p> <p>But $A\hat{O}C = \hat{O}_1 + \hat{O}_2 = 2\hat{B}$</p> <p>($\angle @ \text{centre } 2x \angle @ \text{circum}$)</p> <p>Now <i>OD is a \perp Bisector of $A\hat{O}C$</i></p> <p>(proven in 4.1.1.)</p> <p>$\therefore \hat{O}_1 = \hat{O}_2$</p> <p>Thus, $\hat{O}_2 = \hat{B}$ (Both = to \hat{O}_1)</p> <p>$\therefore \hat{B} = \hat{C}_2$</p> <p>Hence, <i>CD is a tangent to $\odot ABC$ @ C</i></p> <p>(<i>converse tan chord theorem</i>)</p>	$\checkmark S/R$ $\checkmark S$ $\checkmark \hat{O}_1 = \hat{O}_2$ $\checkmark R$ (4)

[13]